
8 Bootstrapping, jackknifing and cross validation.

Reusing your data

Bootstrapping, jackknifing and cross validation are three superficially similar statistical
techniques that involve reusing or re-sampling your data. In each case a single sample of
observations is considered as many samples with the same estimation process being applied
to each of them. However, the purposes of this reuse of he samples are quite different for
each method. In summary

• Bootstrapping is a method for evaluating the variance of an estimator

• Jackknifing is a method for reducing the bias of an estimator, and evaluating the
variance of an estimator.

• Cross validation is a method for evaluating the error involved in making predictions.

Since each of these methods involves repeatedly applying a statistical procedure to a
modified or sampled set of data, they are all computationally intensive. In many special
cases computational shortcuts can be worked out, however, in most applications it is far
easier to simply use existing methods in a loop.

8.1 Bootstrapping

In many of the examples of estimation we have met so far we have been able not only to
get estimators but to estimate the variance of the estimators. For example we know that
X̄, the sample mean, is generally a good estimator of µ the population mean. But we
also know that the variance of X̄ over repeated sampling is σ

2

n
, when σ2 is the population

variance. Hence we are able to compute the standard error

√

s2

n
where s2 =

1

n − 1

∑

i

(Xi − X̄)2

Note here that we have used our data twice. Once to get the estimate and once to get
the estimate of the variance of the estimate. Bootstrapping takes this idea to an extreme
and is useful in cases when the variance of the estimator is difficult to get. The process is
like this:

• Observe a sample X = {X1 . . .Xn}.

• Compute θ̂(X) a function of the data which estimates some parameter θ of the model.

• For i = 1 up to s where s is the number of bootstrap samples being generated:

– generate a bootstrap sample X i = {X i

1 . . .X i

n
} by sampling with replacement

from the original observed data set

– compute θ̂i = θ̂i(X i) in the same way that you calculated the original estimate
θ̂.
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• Compute the sample mean and sample variance of the θ̂is

¯̂
θ =

1

s

∑

i

θ̂i and b =
1

s − 1

∑

i

(θ̂i − ¯̂
θ)2

• Give θ̂ as you estimate of θ and
√

b as your bootstrap estimate of its standard error.

Notes

Suppose that the data X1 . . .Xn come from a distribution with cumulative distribution
function F (x). In an ideal world, we would not need to bootstrap, we would just get
more samples from F and evaluate the variance of our estimate with these new samples.
What the bootstrap does is to replace sampling from F with sampling from the empirical
distribution function which is an estimate of F . This is shown in figure 17: the blue line
shows the distribution function for the standard Normal. The red line shows the empirical
distribution function of a sample of 100 random normal observations. We would like to
take new samples from the distribution shown in blue but in reality we don’t know this so
we can not. Instead we take new samples from the distribution shown in red and hope that
the red line is a good approximation to the blue one. Thus, we see that the bootstrap is
only as good as our empirical distribution function is and estimate of the true distribution
function.

The number of bootstrap samples, s, needs to be large but since the error in evaluating
the variance decreases as 1√

s
, there is no point in making s too big. Some trial and error is

called for. Also you can plot the value of the bootstrap estimate of variance against s to
see whether it has settled down to some value. See figure 18.

The bootstrap is a robust, non-parametric, method that does well with smaller samples
or awkward distributions. There is also the semi-parametric bootstrap in which a smoothed
version of the empirical distribution function is sampled from. This is done very easily by
adding a small random Normal(0, σ2) to each re-sampled observation. When σ2 is small
the amount of smoothing is small, when large the amount of smoothing is large.

Computation

Suppose we have an R function f(), say, that computes a statistic from some data set x

we can generate our bootstrapped estimate of variance b as follows:

> s = 1000

> t = rep(0,s)

> for (i in 1:s) t[i] = f(sample(x,replace=TRUE))

> b = var(t)

Using hist(t) we can also get an impression of the sampling distribution of the statistic.
To use the semi-parametric bootstrap we would replace the third line above with

> for (i in 1:s) t[i] = f( sample(x,replace=TRUE) + a * rnorm(length(x)) )

where a is the smoothing parameter.
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Figure 17: The empirical distribution function as an estimate of the true distribution
function
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Figure 18: Convergence of the bootstrap estimate of the variance of an estimate of the
mean of 100 observations from an Exponential(1) distribution
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8.2 Jackknifing

The jackknife is a more orderly version of the bootstrap. Instead of generating a set of
random samples from X1 . . . Xn we generate n samples of size n − 1 by leaving out one
observation at a time.

• Observe a sample X = {X1 . . .Xn}.

• Compute θ̂(X) a function of the data which estimates some parameter θ of the model.

• For i = 1 up to n

– generate a jackknife sample X−i = {X1, . . .Xi−1, Xi+1 . . .Xn} by leaving out the
ith observation

– calculate θ̂−i by applying the estimation process to the jackknife sample

• Calculate the jackknifed estimate

θ̂∗ =
1

n

n
∑

i=1

θ̂−i

• and the jackknife estimate of variance

n − 1

n

n
∑

i=1

(θ̂−i − θ̂∗)
2

Notes

One of the criteria for choosing an estimate is whether it is biased or unbiased. If an
estimator is unbiased this means that its mean is equal to the parameter that we want to
estimate. For example, we know that the mean of the sample variance s2 = 1

n−1

∑

i(Xi−X̄)2

is the population variance σ2. Hence, s2 is an unbiased estimator for σ2. In fact this is
one reason why we choose to divide by n − 1 rather than n. The sample mean is also
an unbiased estimator of the population mean. The difference between the mean of an
estimator and the parameter we want to estimate is called the bias of the estimator. If θ̂

is an estimator of θ the bias is
θ − Eθ̂

The jackknife can be used to estimate the variance of an estimate and also the bias of
an estimate. The variance is given above. The estimate of the bias is

(n − 1)(θ̂∗ − θ̂)

Hence, we get the bias corrected jackknife estimate

θ̃ = θ̂ − (n − 1) (θ̂∗ − θ̂)

= n θ̂ − (n − 1) θ̂∗
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Computation

In R, again assuming that we have a data set x and some function f() that evaluates an
estimator we can jackknife as follows making use of the [-i] construct:

> t = rep(0,length(x))

> for (i in 1:length(x)) t[i] = f(x[-i])

> jke = mean(t)

> jkv = (n-1)/n * sum( (t-jke)^2 )

> jkbce = n * f(x) - (n-1) * jke

so that jke is the jackknifed estimate, jkv is the jackknife estimate of variance and jkbce

is the jackknife bias corrected estimate.

8.3 Cross validation

Cross validation is a method for evaluating the predictive error when we fit a function
relating two, or more, variables. Although, the purpose and setting are quite different to
the jackknife it also involves leaving out one observation at a time.

To see the value of cross validation we must first appreciate the difference between
the fitted error and the predictive error. For example, when we perform a least squares
linear regression of Y on X using a bivariate sample of observations (X1, Y1), . . . (Xn, Yn)
we minimize the fitted error

n
∑

i=1

(Yi − Ŷi)
2 =

n
∑

i=1

(Yi − (â + b̂Xi))
2

However, if we are primarily interested in predicting Yn+1 the next value of Y given only
Xn+1 the next value of X the function we are interested in minimizing

(Yn+1 − (â + b̂Xn+1))
2

where â and b̂ are chosen without using the values Xi+1 and Yi+1.
A commonly use technique to evaluate predictive error was to split a sample in half.

The first half only would be used to choose the fit and the second half would be used to
evaluate the predictive error. Thus, we would have a sample for fitting and a sample for
validation, also known as a training set and a testing set. However, this is clearly very
wasteful. We should be able to fit a better model using all the data, but can we still get
an estimate of the predictive error? Cross validation is devised for exactly this purpose.

• Observe a bivariate sample (X1, Y1), . . . (Xn, Yn).

• For i = 1 up to n

– leave the point (Xi, Yi) out of the sample

– fit the model Y = f−i(X) using the remaining points.
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– calculate the predicted value of the excluded point

Ŷ−i = f−i(Xi)

• Estimate the predictive error using

n
∑

i=1

(Yi − Ŷ−i)
2

Notes

We can see that the fitted and predictive errors are very similar. The value Ŷ in the former
is simply replaced by Ŷ−i in the latter.

Cross validation is primarily used not to estimate the parameters of a fit, but to choose
between different models. For example, suppose we have two models that we want to
consider, a linear and a quadratic fit:

Y = a + bX

Y = a + bX + cX2

we know that the fitted error for the quadratic model will always be smaller than the fitted
error for the linear model. However, the predictive error may not be smaller and can be
used as a criterion for choosing the model.

Another common use for cross validation is to choose parameters such at the smoothing
parameter used in the semi-parametric bootstrap above. In that case we would leave out
each observation in turn and choose the smoothing parameter that best predicted the
missing values on average.

Computation

As an example, suppose we want to use R to find find the predictive error for a fit of Y as
a quadratic polynomial in X, we would do something like this:

> perrs = rep(0,length(y))

> for (i in 1:length(perrs))

+ {

+ cf = lsfit( cbind( x[-i], x[-i]^2 ) , y[-i] )$coef

+ yhat = cf[1] + cf[2]*x[i] + cf[3]*x[i]^2

+ perrs[i] = y[i] - yhat

+ }

> perr = sum( perrs^2 )
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8.4 Worksheet

1. Generate a single sample of 100 observations from some Normal distribution. Com-
pute X̄, the usual estimate of the mean, and compute the standard error in the usual
way. Now use a large number of bootstrap samples to estimate the standard error.
Compare your two estimates of the variance of X̄, and compare these with the theo-
retical standard error (that is the one you would get if you actually know the value
of σ2).

2. Use the parametric bootstrap to estimate the variance for the above data. Try dif-
ferent amounts of smoothing.

3. Use the jackknife instead of the bootstrap for question 1.

4. * Download the data set called income. This contains two columns the first is the
number of adults in a household and the second is the combined income for the
household. If we want to estimate the mean income per person we can do this in one
of two ways:

> mean(income/size)

> mean(income)/mean(size)

Use the bootstrap to evaluate the variances of these two estimators. Which one is
the better estimator?

5. * Use the jackknife to evaluate the variance and bias of the two estimators in question
4.

6. * Consider fitting a polynomial relationship between income, Y , and household size,
X:

Y = a + bX + cX2 + dX3 + . . .

Use cross validation to choose the polynomial with the smallest predictive error.
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